
GRASP Approach for the Glass Cutting
Problem

Abhradeep Guha Thakurta1, Ashwath Kumar.K2, and Vijayan Immanuel3

1 National Institute of Technology Karnataka, Surathkal,
Srinivasnagar-575025, India
abhra80@rediffmail.com

2 National Institute of Technology Karnataka, Surathkal,
Srinivasnagar-575025, India
kashwathkumar@gmail.com

3 National Institute of Technology Karnataka, Surathkal,
Srinivasnagar-575025, India

vijayan@nitk.ac.in

Abstract. This paper presents a greedy randomized adaptive search
procedure(GRASP) for the Glass Cutting Problem. The Glass Cutting
Problem deals with the placing of rectangular shapes of different sizes
into a rectangular piece having a given width and given length. The
length has to be minimized, thereby minimizing the wastage of glass
which in turn maximizes the profit. This is an NP-hard problem.
Index Terms:GRASP;Glass Cutting Problem;Heuristics . . .

1 Introduction

The industry of glass production [1] is composed of two mainly independent
branches: one producing hollow glass (bottles, glasses, and other differently
shaped products) and dealing with flat glass (for windows, mirrors, and so on).
This paper deals with the flat glass production, where a large glass sheet is first
produced, with an area of some tens of square meters, and individual glass pieces
of various dimensions are then cut from this sheet.
A glass maker usually starts from a set of desired pieces that have been commis-
sioned to him, and a set of sheets to cut from. Loss is created when a sheet can
not be exactly covered by the desired pieces. Loss is constituted by small glass
pieces, called scraps, that cant be utilized in any way.
Contemporary algorithms that deal with this problem mainly base on Heuristic
approach or Adaptive approach. In this paper we present a GRASP (Greedy
Adaptive Reactive Search Procedure) approach to the solution of the problem.
We also claim that the settling time of this algorithm to optimal solution is lesser
compared to the contemporary approaches.

© A. Gelbukh, C.A. Reyes-García. (Eds.)
Advances in Artificial Intelligence.
Research in Computing Science 26, 2006, pp. 93-102

Received 21/06/06
Accepted 03/10/06

Final version 11/10/06

2 Problem Description

2.1 Geometrical Description

The Glass Cutting Problem consists of finding the best way of placing a given set
of n rectangular pieces i = 1, .., n of given heights and widths (hi,wi), without
overlapping into a strip of width W and finite height H. We assume that the
pieces have fixed orientation. An example is shown in Figure 1, in which several
pieces have to be packed into a strip of width W = 40. The problem is NP-hard
in the strong sense because the strongly NP-hard one-dimensional bin-packing
problem can easily be transformed into the Two Dimensional Glass Cutting
problem. Therefore most research effort has been focused on developing heuristic
algorithms for this problem.

Fig. 1. A typical example of a solution to NP-Glass Cutting Problem

2.2 Glass Cutting Technology

In flat glass cutting [1] two separate steps are needed to extract a set of smaller
pieces from a large sheet:

– First, a cutting pattern is scored on the glass sheet using a cutting wheel.
– Second, pieces are separated by using breakout bars, that hit the glass and

create a mechanical stress in the neighborhood of one of the lines that were
scored in the previous step. Internal glass tension breaks the glass in cor-
respondence with the scored lines. Due to the critical breakout mechanism,

94 Abhradeep Guha T., Ashwath Kumar.K and Vijayan I.

several constraints must be observed when scoring the cutting pattern, the
most notable of which is that cuts must always be drawn from end to end
of a glass piece.In practice, a cutting pattern is composed of a series of end-
to-end vertical cuts (called X-cuts), breaking the sheet in a series of large
stripes. Each stripe is then cut end-to-end in the horizontal direction (Y-
cuts). This process may be repeated (W- and Z- cuts) in order to obtain the
desired piece sizes.

– Third, a minimum distance between adjacent parallel cuts must be observed,
in order for breakout bars to operate correctly.

– Fourth, the extreme borders of the sheet cannot be used due to irregularities:
pieces must observe a minimum distance from the sheet boundary.

– Fifth, some sheets might be damaged in some internal point: no piece should
be placed over these points.

– Sixth, a maximum distance between adjacent vertical parallel cuts must be
observed, since the cutting machines have a vertical size smaller than the
horizontal one and the pieces need to be rotated during breakout.

Because of all these constraints it is very difficult to make a Non-Adaptive Heuris-
tic algorithm for the problem.

3 Constructive Algorithm

The algorithm adopted to solve the real life glass cutting problem is an iterative
process which is called the constructive algorithm [2]. We follow an iterative
process in which we combine two elements: a list P of pieces still to be packed,
initially the complete list of pieces, and a list L of empty rectangles of infinite
height in which a piece can be packed, initially containing only the strip S of
width W. The rectangles will be denoted by the pair wi, li, where wi is the width
and li is the level of its bottom side. At each step, a rectangle is chosen from
L and, from the pieces in P fitting into it, a piece is chosen to be packed. That
usually produces new rectangles going into L and the process goes on until all
the pieces have been packed. The steps to be followed are as follows-

– Step 0: Initialization
L = {S}, the set of empty rectangles.
P = {p1, p2. . . pm}, the set of pieces still to be packed, ordered by non-
increasing wi. Ties are broken by non-increasing hi.
Qi is the number of pieces of type i to be packed.
C =�; the set of pieces already packed.

– Step 1: Choosing the rectangle in L
Take R* = {w*, l*}, where l* = min {li | {wi, li} ε L}.
Ties are broken by minimum wi. If none of the remaining pieces can fit into
R*:
- L is updated by lifting the bottom side of R* to the minimal level li of its
adjacent rectangles and merging R* with the rectangle(s) of minimum level

GRASP Approach for the Glass Cutting Problem 95

li.
- That leaves a closed rectangle below which is considered waste.
- Go back to select a new R*.
Otherwise, go to Step 2.

– Step 2: Choosing the piece to pack
Once a rectangle R* has been chosen, consider the pieces i of P fitting into
R* in order to choose which one to pack. For each of these pieces i we com-
pute mi= max{m ε Z+ | m*wi ≤ w*m ≤ Qi}, the number of copies of piece
i fitting into the width of R*, and consider all possible blocks of 1, 2, ..,mi
adjacent copies as alternatives to fill R*. The height of a block composed of
k copies of piece i is hi and its width k * wi. All these alternatives form the
set P*. For the sake of simplicity, all the elements of P* will be called pieces
from this point on.
Several criteria have been considered to select the piece to pack:
1. Piece j with maximum width wj , breaking ties by non-increasing hj .
2. Max{wj + 0.1 * hj}
3. Max{wj + 0.5 * hj}
4. The piece j whose height hj is more similar to the difference between the
bottom side of R* and the bottom sides of one of the adjacent rectangles.
The first three criteria are based on the width, trying to fill the bottom of
rectangle R* as much as possible. Each one of them gives a different im-
portance to the height of the pieces. The fourth criterion tries to maintain
a profile of the current solution which is as smooth as possible, avoiding
peaks and troughs. However, all these criteria may delay the packing of tall
pieces which will cause large increases in the required height H at the end
of the process. In order to avoid this situation, we complement these criteria
by computing a double estimation of the effect of not packing the tallest
remaining piece. When we select a piece, according to the chosen criterion,
before packing it we check if it is the highest remaining piece fitting in R*. If
that is the case, we place the piece into the strip. Otherwise, we do a double
computation:

We put the tallest piece j into the strip and see if that piece increases the
current required height H. If it does, we determine the empty area, E, de-
fined by the new height and compare it with the area of the pieces still to
be packed, M, plus an estimation of the unavoidable waste involved in the
process: U = (W ∗ LB − A)/4, where LB is a lower bound on the required
length and A is the total area of the pieces. If E > M + U, the tallest piece
j is selected for packing and mj copies of it are packed into R*. Otherwise,
we compute the second estimation.
We put the selected piece into the strip and then we put the tallest piece j
in one of the other rectangles of L or on top of the selected piece, wherever
it produces the minimum required length. We repeat the argument of the
first estimation, decide if the tallest piece j is preferred for packing and then

96 Abhradeep Guha T., Ashwath Kumar.K and Vijayan I.

pack mj copies of it.

– Step 3: Rotation and optimizing
Once the step 2 is completed, the rectangle can be positioned in two ways,
one with its longer side as the base and other with its smaller side as the
base. We have to compute the efficiency in both the cases, and adopt the
posture giving more efficiency.
The Heuristics used can be represented as follows
1. After finding a rectangle from the strip database, the algorithm checks if
the rectangle fits in the upright manner. If it does not fit in, the rectangle
has to be flipped and then the optimal placement has to be carried out.
2. The end result expected after this computation is the height must be min-
imized.

– Step 4: Choosing a position in R* to pack the piece
Usually the piece to be packed does not completely fill rectangle R*. There-
fore we have to decide its position inside R*. Obviously, the piece will be
at the bottom of R*, but its position on the left or on the right hand side
of R* has to e determined. Let us denote by Rl and Rr the rectangles of L
adjacent to R* on its left and on its right.
1. If Rl = � (Rr = �), the piece goes on the left (right) hand side of R *. If
Rl = Rr = �, the piece is placed on the right hand side.
2. Otherwise, we take into account the levels of Rl and Rr, ll and lr:

If l* + hi = ll (l* + hi = lr), the piece is placed on the left (right) hand
side.
If ll = lr, the piece is placed as near as possible to one strip side.
Otherwise, the piece is put adjacent to the rectangle with maximum level.

– Step 5: Updating the lists C = C ∪ {pi}
Make Qi = Qi k, where k is the number of copies of the piece i forming the
block chosen to be packed. If Qi = 0, remove piece i from the list P Add the
new rectangles to L. Merge two rectangles if they are adjacent and have the
same level.

4 GRASP Algorithm

GRASP has a strong intuitive appeal, a prominent empirical track record, and is
trivial to efficiently implement on parallel processors [3]. GRASP is an iterative
randomized sampling technique in which each iteration provides a solution to
the problem at hand. The incumbent solution over all GRASP iterations is kept
as the final result. There are two phases within each GRASP iteration: the first
intelligently constructs an initial solution via an adaptive randomized greedy
function; the the second applies a local search procedure to the constructed so-
lution in hope of finding an improvement. In this case GRASP is an iterative

GRASP Approach for the Glass Cutting Problem 97

Fig. 2. Generic GRASP Pseudocode

procedure combining a constructive phase and an improvement phase. In the
constructive phase a solution is built step by step, adding elements to a partial
solution. In order to choose the element to be added, a greedy function is com-
puted, which is dynamically adapted as the partial solution is built. However,
the selection of the element is not deterministic but subjected to a randomiza-
tion process. In that way, when we repeat the process, we can obtain different
solutions. After each constructive phase, the improvement phase, usually con-
sisting of a simple local search, tries to substitute some elements of the solution
which are there as the result of the randomization, by some others, producing
an overall better solution.

4.1 Constructive Phase

In our algorithm the constructive phase corresponds to the constructive algo-
rithm described in Section 3, introducing randomization procedures when se-
lecting the piece to pack. Let si be the score of piece i ε P* on the selection
criterion we are using and smax=max{ si| i ε p* },and let δ be a parameter to
be determined (δ lies between 0 and 1). We have considered four alternatives:

– 1. Select piece i at random in set
C = { j | sj = (smin + δ (smax - smin)) }
(C is commonly called a Restricted Set of Candidates).

– 2. Select piece i at random in set
C = {j | sj = (smax) }

– 3. Select piece i at random from among the best
100 (1 - δ)% of the pieces, irrespective of their score.

– 4. Select piece i from among the whole set P* but
with probability proportional to its score si (pi = si/Σsj).

Using one of these randomization procedures on one of the selection criteria
described above, a piece is chosen to be packed at each step of the constructive
procedure. Nevertheless, the estimations of the effect of the tallest piece are also
taken into account. These estimations are also randomized by using a parameter

98 Abhradeep Guha T., Ashwath Kumar.K and Vijayan I.

γ. If E > γ ∗ (M + U), he tallest piece j is selected and a number of copies
randomly chosen between 1 and mj is packed. At each iteration the parameter δ
is randomly chosen in the interval (0.9, 1.6). A preliminary computational study
showed that the term M + U tends to underestimate the total area which will
be required by the remaining pieces and therefore the value of γ should oscillate
above the value 1, though we also allow it to be slightly lower than 1.

Fig. 3. The GRASP Procedure for Glass Cutting Problem

4.2 Determining the parameter δ

A preliminary computational experience showed that no value of always pro-
duced the best results. Therefore, we considered several strategies basically con-
sisting of changing the value of δ randomly or systematically along the iterations.
These strategies were:

GRASP Approach for the Glass Cutting Problem 99

– 1. At each iteration, choose δ at random from the interval [0.4, 0.9]

– 2. At each iteration, choose δ at random from the interval [0.25, 0.75]

– 3. At each iteration δ takes one of these 5 values in turn: 0.5,0.6,0.7,0.8,0.9.

– 4. δ = 0.75

– 5. Reactive GRASP
In Reactive GRASP δ is initially taken at random from a set of discrete
values, but after a certain number of iterations, the relative quality of the
solutions obtained with each value of δ is taken into account and the prob-
ability of values consistently producing better solutions is increased.

5 Experimentation and Comparison with other
Contemporary Algorithms

To experimentally evaluate the algorithms performance, in terms of result quality
we selected some real benchmarks [5] and a comparison of the results with the
set of commercial optimizers and our algorithm is tabulated.

5.1 Benchmarks

The characteristics of benchmarks used are reported in Figure 4. For each bench-
mark, the number of different piece sized and the total number of pieces are
reported. The reported area is the sum of the areas of all the pieces. The bench-

Fig. 4. Results of the Experimentation

100 Abhradeep Guha T., Ashwath Kumar.K and Vijayan I.

marks selected are regarded as real cases since they represent actual data used
by some glass makers. Further, they represent critical data, since they are some
cases for which glass makers complained aboutthe optimization efficiency. The
total glass area . The glass piece taken given initially is 135*135, the total area
of all the pieces is found to be 16277 m2. The area wastage is found to be (
3+12+15+14) m2 , i.e 44 m2 . The distribution given by the software given is
as shown in figure 6. The study of the parameter δ in comparison with other

Fig. 5. Distribution Result

Fig. 6. Delta Comparison

Fig. 6. Delta Comparison

contemporary algorithms give the following results.

contemporary algorithms give the following results.

GRASP Approach for the Glass Cutting Problem 101

6 Conclusion

We have modified the conventional GRASP and used a Heuristic approach for
the Glass Cutting Problem. The complete algorithm obtains good results on
large sets of fairly randomized test cases. The algorithm is quite flexible and can
be easily adapted to accommodate other conditions or constraints. Future work
will involve the design of more efficient procedure to check the existence of a
feasible packing layout, in order to take more advantages on the less number of
feasibility tests performed.

References

1. The handbook of glass manufacturing, Haslee Publishing, NY USA.
2. BrazilJo.o P. Marques Silva and Karem A. Sakallah, GRASP A New Search Algo-

rithm for Satisfiability.
3. Jakob Puchinger, Gunther R. Raidl,and Gabriele Koller, Solving a Real-World

”Glass Cutting Problem
4. R. Alvarez-Valde , F. Parreno and J.M. Tamarit, Reactive GRASP for the Strip

Packing Problem.
5. Zhang, D., Kang, Y., Deng, A. (2005) A New heuristic recursive algorithm for the

Strip rectangular packing problem, Computers and Operations Research,in press.
6. Youzou Fukagaway, Yuji Shinanoz, Tomoyuki Wadaz, Mario Nakamori, Optimum

Placement of a Wafer on a Rectangular Chip Grid. Proceedings of 6th World Con-
gresses of Structural and Multidisciplinary Optimization Rio de Janeiro, 30 May -
03 June 2005.

Fig. 6. Delta Comparison

contemporary algorithms give the following results.

102 Abhradeep Guha T., Ashwath Kumar.K and Vijayan I.

